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SUMMARY

The objective of the 1979 solar eclipse field measurements program has been to
provide a comprehensive set of coordinated measurements in the middle
abosphere and lower ionosphere. These measurements are important for an
improved understanding of the processes controlling this region and its state
of ionization. This report presents the results of two Army sponsored rockets
which represent a portion of these measurements.

Two closely timed measurements of electron density showed that the D region
was very disturbed during the eclipse period, with electron densities of

2 x 105 cm"3 being measured near 90 km. A low resolution precipitating
electron energy spectrum was measured, and the measurements have been
converted to an ion pair production rate profile. Ionization rates for cosmic
rays, solar X-rays, and Lyman-alpha radiation were also obtained, but were
found to be less than the rate due to precipitating particles throughout the D
region. Unfortunately, the experiment to measure NO density failed, but this
failure was not as serious as it might otherwise have been because of the
dominance of particle induced ionization.
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1. INTRODUCTION

The basic objective of the 1979 solar eclipse field measurements program
conducted 26 February 1979 at Red Lake, Ontario, Canada, was to provide
measurements in the middle atmosphere of parameters crucial to an improved
understanding of the chemical and physical processes controlling this region
and particularly its state of ionization. To accomplish this objective, the
US Army Atmospheric Sciences Laboratory (ASL) assisted in coordinating the
1979 solar eclipse field program' in conjunction with the National Aeronautics
and Space Administration (NASA), the Air Force Geophysics Laboratory (AFGL),
and the National Research Council of Canada (NRC). Rarely has such a degree
of success been attained as was reached by this program. Of approximately 80
separate measurements made involving 33 sounding rockets, only a few yielded
substantially less data than planned. Subsequent analyses will yield
complementary sets of data from what may well prove to be the best set of
coordinated middle atmospheric measurements of the 1970's.

In developing a research program for the solar eclipse, principal Army
interest centered on the behavior of the ionosphere and neutral atmosphere
below 100 km. Under quiet conditions, solar photon radiation is the major
source of ionization above 70 km, with galactic cosmic rays providing a
smaller, but dominant, source below 70 km. Under disturbed conditions, such
as actually occurred during the solar eclipse period, precipitation of
energetic electrons proved to be the largest source of ionization above
50 km. Experiments designed to measure in situ the several ionizing sources,
electron density, and densities of several important neutral species were
flown on the larger sounding rockets. (These experiments, along with those
under the auspices of AFGL and NASA, constitute what is often called "the
large rocket program.") Another goal of the research program was to measure
numerous atmospheric parameters during the week leading up to, through, and
after the eclipse, thus providing a data background during this period. The
various payloads were flown with the smaller meteorological rockets. (These
experiments are often called "the small rocket program.") In addition to the
in situ measurements, a partial reflection sounder was operated during the
entire period to provide near continuous profiles of electron densities in the
D region. This report presents the initial results of the ASL sponsored
portion of the large rocket program. The results of the ASL small rocket
program are being reported in a companion volume.

2

As part of the large rocket program, Utah State University (USU) and the
Physical Science Laboratory (PSL) of New Mexico State University, under the

IM. G. Heaps et al, 1980, 1979 Solar Eclipse: Part I - Atmospheric Sciences
Laboratory Field Program Summary, ASL-TR-O059, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, NM

2R. 0. Olsen and M. G. Heaps, 1980, 1979 Solar Eclipse: Part III - Initial
Results of the Small Rocket and Partial Reflection Sounder Program, ASL-TR (in
press), US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM
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sponsorship of ASL, instrumented two Nike-Orion rockets that were flown during
the eclipse period., The two rockets, briefly denoted A1 and B1 , were
launched 30 seconds apart during the onset phase of the solar eclipse, about
25 minutes before totality. At this time some 60 percent of the solar disk
was obscured. The launch summary is presented in table 1, and the payload
result summary is given in table 2.

2. RESULTS OF IONIZATION MEASUREMENTS

Various measurements were made on payload B1 to monitor different ionization
sources. Energetic particles were monitored from 7 keV to 1 MeV. Cosmic rays
with energies greater than 2 MeV were measured. Solar X-rays in the range of
1 to 10 keV were monitored, as well as the solar EUV and UV flux at 1216 and
2050 angstroms. It now appears certain that during the eclipse period
atmospheric ionization was controlled almost exclusively by an energetic and
variable flux of precipitation electrons.

2.1 Energetic Particle Precipitation

The energetic particle measurements provide a very low resolution differential
energy spectrum of precipitating particles by pulse height analysis of
measured particles in five approximately logarithmically related energy bins
from 7 to 13, 13 to 30, 30 to 100, 100 to 300, and 300 to 1000 keV.
Additionally, an integral measurement is made of all power carried by
electrons between 7 keV to 1 MeV.

The measured altitude profile from each of the six electron spectrometer
channels is shown in figures 1 through 6, respectively, fr the ascent portion
of the B1 payload flight. Figure 1 shows the integrated power spectrum (7 keV
to I MeVJ as a function of altitude, and figures 2 through 6 show the power
measured in the individual energy bins. Since the instrument was looking
upward at 20 degrees with respect to normal to rocket axis and was at the same
time spinning, the center of the electron spectrometer would scan over pitch
angles from 36 to 74 degrees. The attitude stability of the B1 payload was
amazing. Once above the dense atmosphere, the cone angle was only on the
order of 1 degree half angle and the position of the rocket axis remained also
within 1 degree throughout the flight until the second stage rocket fins
developed sufficient drag on descent to turn the payload over. The
spectrometer field of view was made very wide (approximately 81 degrees full
angle at one-half power points) to obtain maximum sensitivity; however, this
field of view makes pitch angle analysis extremely ambiguous.

All of the measurements show spin modulation; however, the lower energy
channels in particular have increasing modulation at decreasing altitudes.
Since a good portion of the spectrometer field of view dips into negative
pitch angles where particles ascend the field lines, and at low altitudes the
ascending particles are increasingly unlikely, the data fit the expected
behavior. At altitudes well above the deposition peak, the low energy data

JK. D. Baker et al, 1980, Rocket Measurements of D- and E-Region Parameters
During the 26 February 1979 Total Solar Eclipse, Final Report under
subcontract -489 MJ B, utah state University, Logan, UT

10



would be considered with a very nearly isotropic pitch angle distribution over
the upper hemisphere. This conclusion is invalid for the higher energy
channels which appear to be consistent with a much more nearly field-aligned
flux.

Very prominent, immediately noticeable features of the data are the extremely
intense bursts of very high energy particles which occur randomly throughout
the flight. These bursts are observed almost exclusively in the high energy
channels. The 300 keV to 1 McV channel consistently records abrupt count rate
increases of about a factor of 30, lasting for a half second or so and then
diminishing to a lower level after another second or two. The 100 to 300 keV
channel also records these bursts, but with smaller percentage increases.
Finally, the lower energy channels record these bursts as increases at
altitudes below the deposition peak and as decreases above the deposition
peak. Figure 7 shows a record of these bursts. In the figure the
measurements are expanded between 85 and 88 seconds into the flight (95 to 98
km).

Care must be taken in inferring the causes of such decreases in the low energy
component at the time of spectaculir increases in the high energy component.
To obtain the measurements, the ectrometer forms a pulse about 1.5is wide

which is pulse height analyzed. Very high count rates (2-3 x 105 counts/s) in
some channels may result in apparent decreases in other channels because of
instrumental pulse pileup or dead time. However, if pulse pileup or dead time
were the sole cause of the observed low energy channel decreases, then the
shape of those decreases would be expected to be the same in all of the low
energy channels. A comparison of the decrease at 101.5 km between the 30 to
100 keV channei and the 13 to 30 keV channel illustrates that the decreases
are not uniform in either size or shape. If the effects are not wholly
instrumental, the data imply that the existence of a very high energy
component (burst) modulates the low energy components. A tabulation of the
times of high energy bursts is given in table 3. The altitude-time
relationship for payload B, may be found from Z = -0.004704 t2 + 1.872 t - 28,
where Z is kilometers and is seconds after lift-off.

The spectrometer pulse-height-analyzed outputs and the apparent manner in
which the high energy bursts are absorbed would not be inconsistent with a
monoenergetic flux of electrons in the 200 to 300 keV region which vary in
time and/or space (most likely time). Electron bursts are detected as low as
55 km on descent. The burst of energetic electrons at about 101 km was seen
on the RF probe as an extremely abrupt, approximately 30 percent, increase in
electron density. Other features of the electron density profile have also
been directly attributed to energetic electron bursts. The A1 payload
carrying an RF probe was flown 30 seconds earlier and made density
measurements at some distance away. These two measurements would allow a
simultaneous comparison of particle bursts and electron density perturbations
at another location. Unfortunately, the A1 payload RF probe data has had only
a preliminary analysis because of an abrupt shift in the instrument zero at
about 90 km on ascent.

The altitude profiles of each of the electron spectrometer channels shown in
figures 1 through 6 can be used to derive the suspected primary flux of the
precipitating electrons which can in turn be used to derive the ion pair
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production rate profile' (figure 8, curve A). In calculating curve A,
remember that the spectrometer channels had a low energy cutoff at 7 keV,
therefore, measurements could not be made of the low energy primary flux
responsible for ionization at altitudes primarily above 100 km. Curve B in
figure 8 is the postulated ion pair production rate profile which would best
simulate the measured electron densities. Below 90 km the profiles are
identical.

2.2 Cosmic Rays

The cosmic ray detector was intended to measure cosmic ray shower products
capable of depositing less than 2 MeV of energy into a 3-inch diameter, 3-inch
long plastic scintillator. Since the primary cosmic ray may produce these
secondary showers either in the atmosphere or in the payload itself, it
becomes difficult to separate the two effects to obtain an atmospheric
production rate above 20 km directly from the data. As referenced to count
rates measured on the ground before the eclipse, there is no indication of
unusual cosmic ray activity. The profile of count rate versus altitude is
shown in figure 9 and behaves very much as expected. No further analysis is
anticipated because of the apparent domination of atmospheric ionization by
auroral electrons at higher altitudes.

2.3 Solar X-Rays

The measured count rates for the nominal solar X-ray energy spectrum shown in
figure 10 were taken near apogee (approximately 158 kin) and represent a 20-
second integration of those periods of time when the instrument was directed
toward the sun. A similar plot for those periods of time when the sun was
outside the detector field of view is shown in figure II. Only at the lowest
energies is the dominance of the direct solar X-rays clearly discernible. At
higher energies, though lower fluxes, the direct solar and nonsolar count
rates are essentially the same. The origin of the counts while the sun is not
within the instrument field of view has not been determined. Several
possibilities exist, including: (a) precipitated energetic electrons which
manage to get through the magnetic broom, (b) the Bremsstrahlung and
characteristic X-rays produced as energetic electrons are stopped within both
the instrument and payload, and (c) atmospheric Bremsstrahlung.

If the integrated energy carried in the direct solar flux between 1 and 10 keY
is plotted as a function of altitude, the curve as shown in figure 12
results. Although some of the scatter can be attributed to counting
statistics, variations in the measurements correlating with energetic electron
bursts produce much of the uncertainty. When a spatial differentiation of the
hand-smoothed points is performed, and if one ion pair is produced for every
35 keV of energy deposited, the ion-pair production rate shown in figure 13 is
calculated.

1K. D. Baker et al, 1980, Rocket Measurements of D- and E-Region Parameters
During the 26 February 1979 Total Solar Eclipse, Final Report under
subcontract 83489 KJB, Utah State University, Logan, UT
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Comparisons between figures 8 and 13 show that the ionization rates for the D

and E regions were controlled by particle precipitation.

2.4 Solar UV (2050 Angstroms)

The solar ultraviolet detector (2050 angstroms photometer) was mounted in the
payload at an angle of 25 degrees above the payload radius and was positioned
to view the sun once during each payload revolution. However, the payload
assumed an attitude which placed the sun near the edge of the photometer's
field of view. Although the instrument worked properly, the payload
experienced very little coning; and as a result, the measurements of the 2050
angstroms flux shown in figures 14 and 15 will be more difficult to
interpret. Since the ionization due to electrons will be much larger than
this secondary source, no additional effort is planned on these results.

2.5 Solar Lyman-alpha Radiation

The solar Lyman-alpha flux was measured on the B1 payload by using an
ionization chamber type detector. The levels of input flux measured for
altitudes up to 160 km are shown in figures 16 and 17. The maximum level
measured is approximately the expected irradiance level above the atmosphere
for a 40 percent residual sun. The levels obtained also compare favorably
with the levels of corresponding altitudes for, the four Super Arcas vehicles
flown in the area at other times during the the program, taking into account
60 percent reduction during the eclipse.2

3. RESULTS OF ELECTRON DENSITY MEASUREMENTS

Electron density measurements were provided by an RF admittance probe on both
Nike-Orion rockets flown during the onset phase of the solar eclipse.
Although the two payloads were launched 30 seconds apart, the results of the
two are complementary, particularly since the antenna on the B, payload was
late in stabilizing (approximately 80 km) and an electronic shift in the' A1
payload made that data not useful above 86 km. The electron density profile
for, the ascent portion of flight BI is shown in figure 18, which also shows
the usable data from the A1 flight. In the region of overlap the two results
agree quite well in view of the spatial and temporal differences involved.
The composite density profile rises quite rapidly from 70 to 90 km and reaches

a rather broad layer around 100 km with a density of about 2 x 105 cm-3 . The
density drops off slightly more than a factor of 2 between 110 and 125 km and
then tails off only slightly up through rocket apogee of 158 km. Structure is
evident in the profile, particularly the abrupt increases at 98 and 118 km.

Fine scale structure is masked in these data by the modulation resulting from
the antenna, which is normal to the rocket spin axis, falling into the
rarefied wake region once per spin. This effect can be noted as the
thickening of the line as the rocket loses its vertical velocity approachinq

2R. 0. Olsen and M. G. Heaps, 1980, 1979 Solar Eclipse: Part III - Initial
Results of the Small Rocket and Partial Reflection Sounder Program, ASL-TR (in
press), US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM
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apogee. The wake effect is much more severe as the rocket backs down on
rocket descent (figure 19). In spi-e of this severe modulation, the general
electron density profile is still useful if the modulation is ignored and the
envelope of the maxima is used. This profile is similar, to the ascent data;
the main differences are the generally lower- values above 94 km on descent,
with one broad minimum at 137 km and a more distinct though narrower minimum
at 115 km. Variations in the temporal and spatial aspects of the
precipitating electron flux may account for, such differences.

From the rather large densities observed in the D and E regions, it is
apparent that substantial ionization was due to auroral particles. The
profiles are representative of those accompanyinq auroral particles in auroral
absorption events and no doubt produced the considerable radiowave absorption
monitored in the vicinity of Red Lake.

4. RESULTS OF MEASUREMENTS OF MINOR CONSTITUENTS

4.1 Atomic Oxygen

The in situ measurement of atomic oxygen, an important minor, constituent
within the mesosphere and lower- thermosphere, was based on the measured
intensity of the 1304 angstroms oxygen resonance triplett scattered by ambient
atomic oxygen from an on-board RF excited lamp. This technique offers the
advantages of being sensitive and relatively free from surface recombination
and qas flow rate problems. Furthermwre, it is relatively unaffected by
ambient pressures found in the 50 to 80 km region. Unlike other, techniques,
it is truly in situ and does not depend on a spatial differentiation.

The raw data in terms of detector, count rate versus altitude are shown in
figure 20. Interpretation of these data in atomic oxygen (0) concentrations
was complicated by a number, of different cond;Lions, most important of which
are:

a. High background count rates due to aurorally excited 1304 angstroms

radiation;

b. Resonantly scattered solar- 1304 anqstroms radiation;

c. Instrument response to 2000 to 3000 angstroms solar- UV;

d. High 0 concentrations making a larqe optical depth for- 0 resonance
lines within the dimensions of the scatter-ing volume.

High backgrounds of 1304 angstroms radiation whether from solar or" auroral
origin increase the scatter- in the measurements, sirce the 0 measurement
requires a subtraction of the lamp "off" count rate from the lamp "on" count
rate. If those rates are large numbers, the statistical accuracy of the
difference suffers. Since the solar- 1304 angstroms backqr'ound must propagate
downward through a medium that has large optical depth, the radiation becomes
isotropic and very rapidly diminishes in intensity due to absorption
(primarily by 0 ) as it penetrates to about 100 km. The auroral 1304
angstroms intensity (which can have a magnitude of a kilorayleigh or- so in a
moderate aurora) is a function of the volume rate of energy deposition and the
effective volume that the detector, can see (governed primarily by absorption
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by 02). Since there was significant energy deposition from particle
precipitation at all altitudes above about 80 km during the eclipse, all of
the 0 data have somewhat more scatter than would otherwise be expected. The
background count rate becomes particularly damaging at altitudes above about
110 km.

Since the background count rate near apogee was approaching the limit of the
electronics, a pulse pileup produced an error and made the count rate appear
smaller than it actually was. This is particularly noticeable at apogee and
just below on the descent portion of the data.

Even with a "solar blind" photomultiplier and two 1304 angstroms filters, the
system still has a finite sensitivity to wavelengths between 2000 and 3000
angstroms. Since there is a very significant solar intensity in this
wavelength region, the detector responds to the sun on every spin once the
payload is above the highly absorbing lower atmosphere. To minimize the
problems from this middle ultraviolet, the data points from approximately one-
third of each spin (where the direct solar effects were seen) were eliminated
during analysis.

Modeling the scattering process to obtain a "transfer function," which relates
count rate and atomic energy density, becomes extremely difficult as the
optical depth increases within the bounds of the scattering volume and finally
requires a rigorous solution as a radiative transport problem with a very
difficult geometry. As a compromise, the scattering process has been
evaluated in detail for each of the three oxygen resonance lines for the
instrument geometry used here. Double scattering (two scattering
interactions) was added with an approximation forcing the conservation of
photons to partially account for effects expected by higher order
scattering. The results of these calculations are shown in figure 21.

Figure 21 shows- that a nonlinear saturation effect occurs at high densities
and the scattering process is temperature sensitive. The nonlinearity at high
densities is caused by: (1) the scattering of photons out of the beam defined
by the lamp and its baffle, (2) reduction of the effective scattering cross
section as the emission line becomes more and more reversed, and (3) reduction
of the probability that a scattered photon will make its way back to the
detector because of further scattering. The temperature dependence is due to
how well the emission and absorption line shapes match (both are Doppler
temperature broadened) and the temperature determined distribution of ground
state levels in the absorbing oxygen atoms.

When the data are analyzed by using curves of figure 21 and the AFGL falling
sphere temperature measurements on payload B ,* the ascent and descent
profiles shown in figures 22 and 23, respectively, result. The peak density
measurement is in error, since even as little as a 10 percent error in any of
the instrument calibrations, cross sections, or modeling of the scattering
process within the measurement system geometry could produce entirely
different results at the peak while making comparatively little difference at
lower density portions of the flight. Undoubtedly the atomic oxygen density

*C. R. Philbrick, private communication, 1979
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was high; best estimates of peak densities are shown by the dashed lines in
figures 22 and 23. Absorption by 02 at altitudes of 70 km and below was not
considered in the analysis and will have the effect of increasing the atomic
oxygen density somewhat above the measured values below 70 km. Analysis is
continuing to refine the results, particularly in the high density regime.

In the absence of particle precipitation, the altitude profile of zenith 5577
angstroms atomic oxygen airglow emission is very useful as a comparison
against the resonant scattering technique for the measurement of atomic oxygen
as discussed earlier. In the presence of particle emission and a measured
atomic oxygen profile, the 5577 angstroms emissions can provide a monitor of
auroral activity and some assistance in inferrinq a volume ion production
rate.

The measurement from the 5577 angstroms vertical viewinq photometer is shown
in figures 24 and 25 for ascent and descent, respectively. The large-scale
variations appearing throughout the flight are periodic and correlate with the
precessional period of the payload. This appears to be due to insufficient
baffling against solar radiation for the altitude that the payload assumed.
Since an altitude dependence was observed in the measured signal (as would be
expected in penetrating an emitting layer), the minima may provide a true
monitor of auroral emissions. The 5577 angstroms photometer data may be used
further after the various measurements have been correlated.

4.2 02(aag), OH,0  03

The infrared-active minor species 02(a'Aq), OHf, and 03 were investigated in

situ by using two techniques: the solar occultation method for ozone deter-

mination, and infrared radiometry for the 02(alAg) and OH determinations.

Unfortunately, useful data from the solar occultation experiment are very
limited, although data below 40 km are a possibility if a more extensive
treatment of the descent data were deemed to warrant 'he effort. Hence, the
radiometric measurements will be emphasized in this section.

The spectral channels of the three-channel, near-infrared radiometer were
centered at 1.27um, 1.56pm, and 1.97um, with equivalent ideal half-power
bandwidths of 0.02%m, 0.21vm, and 0.23um, respectively. The X1.27,m channel
effectively selected the atmospheric radiation associated with the (0,0)

transition in the infrared atmospheric (IR At) system (aAg X3 ) of 2

molecule. Significant spectral contamination of this dayglow measurement is
deemed unlikely. The bandpass of this channel included portions of the OH
Meinel (7,4) and (8,5) bands, which are expected to be much weaker than the
O2 1.27)jm emission at all altitudes under the conditions of the experiment.
Tie OH Meinel (3,1) and (4,2) bands were expected to be dominant contributors
to the airglow signal in the x1.56 m channel. However, lower altitude
contamination from the 02 R At (0,1) emission at 1.58um must be considered.
The branching ratio [I(1.27)/I(1.58)] - [A(0,O)/A(0,1)] - (40-70), together
with the measured (1.27), permits correction of the x1.56,m measurements for
this contamination. The xl.97jm channel was designed to select OH Meinel
Av = 2 bands with upper vibrational quantum number v' = 6 - 9. Spectral
contamination in this channel is expected to result primarily from the (0,0)
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band of the Noxon system at Xl1.91m. The intensity of this band has been
estimated to be about 2 percent that of the IR At (0,0) emission. Hence, it
could contribute significantly to the signal from the X1.97um channel if the
estimated lnte(tsity ratio is valid under the conditions of the experiment.

4.3 Radiometric Measurements--X1.27Pm Channel

High-quality data were realized from both the high- and low-gain outputs.
Useful ascent data were acquired from about 68 km to 105 km, where the 02
1.27um signal became indistinguishable from the hiqh-altitude background.
Useful descent data were acquired from 105 km to about 60 km. However, the
vehicle aspect changed markedly near T + 300 s (about 70 km), and careful
aspect correction of the lower altitude data will be required.

The high-altitude signal (0.5 V peak-to-peak [high gain]) remained nearly
constant from 105 km to near apogee (140 km). A 30 to 40 percent increase in
signal occurred near apogee, followed by a nearly constant signal level to an
altitude of 105 km on descent. This background signal was essentially
independent of vehicle aspect (coning), which makes it unlikely that it is of
direct solar origin. The source has not yet been identified.

Overhead emission rate profiles are presented in figures 26, 27, and 28. The
results in the figures were obtained from the raw data by smoothing (0.10 s
sliding average), instrumentally correcting (absolute responsivity factor),
and adjusting for the effective filter transmittance for the 02 1.27pm
radiation (the filter factor does not necessarily apply to the high-altitude
signal since the associated spectral distribution is unknown). The filter
factor was obtained from a convolution of 02 IR At (0,0) synthetic emission
spectra with the system spectral responsivity function. Two effective
rotational temperatures, 175*K and 300'K, were considered in the analysis.
These temperatures bracket those of interest to the measurements. The filter
factors computed at the two temperatures differed by onlb 1 percent. Hence, a
single correction factor (1.80) was used at all altitudes.

In principle, the high-altitude background signal should be subtracted from
the lower altitude results to obtdin the "true" 02 x1.27pm overhead emission-
rate profile. This step was not done in preparing the set of figures
presented herein. The procedure is of little consequence in determining the
volume emission rate profile from the overhead emission rate profile, since
the constant is automatically eliminated in taking the derivative.
Nevertheless, this correction should be kept in mind when the set of figures
relating to overhead emission rates is examined.

Differential emission-rate profiles for the 02 x1.27um emission are shown in
figure 29. Th2 differential emission rate (lower scale - kR/km) was converted

to an 02(alAg ) concentration by using the accepted value of 2.58 x 10-4 s- 1

for the pertinent A coefficient. (Note that [1 kR/km] = 104 photons/cm3 s.)
Descent data below 80 km are suspect because of changes in viewing apsect
which have not yet been fully considered. A two-layered structure in the 80
to 95 km region is suggested by both the ascent and descent data, but the
evidence is not compelling at the current stage of data analysis. It should
be noted that the ascent and descent profiles are essentially identical above
82 km when the descent profile is displaced downward by 1.5 km. This factor
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may reflect a slight inaccuracy in the trajectory equation which was used, but
the cause remains uncertain at this point.

It is now generally recognized that the upper portion (<80 km) of the 02 (al g

profile is quite variable, responding to significant changes in high-altitude
ozone. The secondary maxima in the 80 to 95 km region apparently exhibit
seasonal effects and respond to stratospheric warming events. Above 94 km,
the present measurements show a very steep decline with an effective scale
height of about 2.5 km.

4.4 Radiometric Measurements--OH Meinel Channels

The data from the 0I.56um and 1.97pm channels have not been subjected to a
complete analysis. Preliminary ascent data for these channels are presented
in figures 30 and 31. A problem arises in connection with the interpretation
of the maximum which occurs at 98 km in the overhead radiance profiles from
each of these channels.

This behavior might be attributed to an instrument malfunction; however, the
descent data exhibit the same general trends as do the ascent data, thus
providing a point favoring the validity of the data. The data from the
x1.97)m channel is particularly anomalous. A very low signal level occurred
immediately after the pop-cover was removed from the instrument. This low
signal level was followed by a fairly rapid increase to a peak value about 15
times the initial value, with a subsequent gradual decline in signal at higher
altitudes to a value near apogee of approximately 3 times the initial value.

In spite of the currently uncertain interpretation of the signals from the
xl.5 6)jm and xI.97um channels, some progress has been made in def;ning the

altitude distribution of OH at the time of the eclipse. The AFGL/USU liquid-
helium-cooled radiometer provided good data on mesospheric OH Meinel emissions
in the (1,0) and (2,1) bands. An apparent overhead emission rate of
approximately 50 kR was observed at 78 km immediately after the pop-cover was
removed from the instrument and the nosetip was separated. Nightglow emission
levels in the (1,0) and (2,1) bands are expected to be about 150 kR and 90 kR,
respectively. The data have not been corrected for the effective filter
factor, but the corrected total intensity is expected to be roughly a factor
of 4 below these nightglow estimates. The volume emission rate profile peaked
between 85 and 86 km and had a full width at half maximum of about 6.5 km.

Several minor neutral constituents were successfully measured, with atomic

oxygen showing extremely high values of 1 x 1012 cm-3 near 90 km. A profile

for 02(aIA g) was obtained, and a profile for 03 below 40 km may also be

extracted from the data. Several bands of OHf were also monitored.

These data, in conjunction with the complete set of coordinated measurements,
may well represent the most comprehensive set of middle atmospheric
measurements of the 1970's.
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TABLE 2. SUMMARY OF RESULTS USU/PSL PAYLOADS

Al Payload

Instrument Measurement Resul ts/Comments

Resonance lamp 0 density Good measurement. Relatively high
0 density. Auroral activity complicates
analysis.

RF capacitance probe Electron density Good data up to 90 km on ascent.

Three-channel IR radio- 02 (Ag) All channels seemed to function

meter 1.27um, 1.58um, OH properly. 02 (lAg) results good.

2.1tm OH channels give unexpected profiles.

Lyman-alpha Solar Lyman- Instrument normal. Interfering
ionization chamber alpha signal on telemetry necessitates

hand reduction of data.

Visible photometer 01 5577A Instrument functioned properly.
Auroral activity precludes derivation
of 0 density by this method.

NO photometer NO density No usable data. Data
acquisition register failed.

UV absorption 03 density Only low altitude data < 40 km
photometer on descent.

B1 Payload

Instrument Measurement Resul ts/ Comments

Proportional counter Solar X-rays X-ray spectra 1-10 keV.

RF capacitance probe Electron density Complete electron density profiles.
Descent data complicated by vehicle
wake effect.

Scintillation Energetic electrons Total energy data throughout flight.
counter (electron) Total E > keV Higher than anticipated aurora

Four separate saturated pulse height channels
energy channels above - 85 km.

Scintillation counter Cosmic ray flux Data complete until telemetry
(cosmic rays) loss at 55 km on descent.

Lyman-alpha ionization Solar Lyman-alpha Good data throughout flight.
chamber flux

UV photometer 2050 A flux Instrument functioned well.
Rocket aspect did not allow
direct solar view.
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TABLE 3. TIMES OF MAJOR HIGH ENERGY ELECTRON BURSTS AS MEASURED BY
THE HIGHEST ENERGY CHANNEL OF THE ELECTRON SPECTROMETER

Onset time Duration
(See after lift-off*) (s)

78.05 .8

85.4 .3

88.8 .4

96.2 .7

103.6 .4

105.4 .3

113.15 .8

142.05 .3

157.3 .3

214.05 1.0

235.4 .2

236.0 .3

237.0 .3

269.1 .3

215.6 1.2

288.9 .3

293.1 1.2

295.3 1.9

300.5 .3

302.6 1.3

304.7 .6

309.6 1.0

319.35 .8

322.7 .2

327.6 .6

330.4 1.1

333.3 1.7

337.2 .2

*Lift-off time = 1628:30 UT.
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Figure 1. Altitude profile of power carried by energetic electrons from 7
keV to 1 MeV.
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1979 ECLIPSE, RED LAKE, CANADA
USU: ELECTRON SPECTROMETER - B1 (ASCENT)
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Figure 3. Altitude profile of power carried by electrons having energies
between 100 keV and 300 keV.
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1979 ECLIPSE. RED LAKE. CANADA
USU: ELECTRON SPECTROMETER B (ASCENT)
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Figure 4. Altitude profile of power carried by electrons having energies
between 30 key and 100 keV.
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1979 ECLIPSE. RED LAKE, CANADA
USU% ELECTRON SPECTROMETER - B1 (ASCENT)
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Figure 5. Altitude profile of power carried by electrons having energies

between 13 keV and 30 keY.
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1979 ECLIPSE, RED LAKE, CANADA
USU: ELECTRON SPECTROMETER - B, (ASCENT)

1I0 I._

110

Crr

I--'90 .. -

80

70r ', !J!t

00 1 ' IL' I0 1 1
POWER (ErFGS / Ct.1M SEC SR)

Figure 6. Altitude profile of power carried by electrons having energies
between 7 keV and 13 keV.
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Figure 10. Measured solar direct X-ray spectrum at 158 km.
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Figure 11. Measured background X-ray spectrum at 158 km.
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Figure 12. Altitude profile of power density from integrated solar X-ray
spectrum.
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Figure 14. Ascent profile of solar 2050A intensity. The modulation is due
to vehicle precession and the solar disk being at the extreme edge
of the detector field of view.
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ELECTRON DENSITY
1979 ECLIPSE. RED LAKE, CANADA
USU: RF PROBE - BI (ASCENT)
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Figure 18. Composite electron density profile from ascent of rockets A1 and
BI derived from the RF admittance probe.
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Figure 20. Atomic oxygen raw data profiles in terms of detector count rate
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